
Dear friends and colleagues of George Bertsch--

I regret I can not attend this symposium because of the much less 
pleasurable task of having to attend an NSAC subcommittee meeting 
this weekend, but I want to tell you all what a great pleasure it is 
having a colleague I can respect as much as I respect George, for his 
curiosity and interest in so many branches of physics, for his deep 
insights, and for his unwavering scientific integrity.  

I also remember fondly that couple of time we have skied down Mt. 
Rainier together from Camp Muir!

Happy Birthday, George!  -David Kaplan
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Nucleosynthesis conditions

Element abundances

Origin of heavy elements:

r-process, s-process, p-process, νp-process

r-process site candidates:

core-collapse supernova, neutron star 
mergers, accretion disks, jets, GRB, ...

r-process conditions:   Yn/Yseed↑

• short dynamical time scale (ms...s)

• electron fraction Ye ≈ 0.4

• high entropy (or high photon-to-baryon 
ratio)

Burbidge, Burbidge, Fowler, and Hoyle
(B2FH 1957)

nn > 1020 cm-3

�

Burbridge, Burbridge, Fowler & Hoyle 1957
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Neutron-star merger simulation (S. Rosswog)

Right conditions for a successful r-process 
(Lattimer & Schramm 1974, Freiburghaus et al. 1999, ...., Goriely et al. 2011)

Do they occur early enough to explain UMP star abundances (Argast et al. 2004)?

r-process heating affects merger dynamics: late X-ray emission in short GRBs 
(Metzger, Arcones, Quataert, Martinez-Pinedo 2010)

Transient with kilo-nova luminosity (Metzger et al. 2010): direct observation of r-process, 
EM counter part to WG

Korobkin, Rosswog, Arcones, Winteler

(submitted MNRAS)

Neutron star mergers

WHERE ARE THE HEAVY (A>90) ELEMENTS MADE ? 
There is general consensus that it involves either one or two 
neutron stars: 
•  The one neutron star scenario: Neutrino driven wind in a 

core-collapse supernova. [Fragile]
• The two neutron star scenario: Dynamical ejection of 

matter in binary neutron star mergers.  [Robust]

Almudena  Arcones    (GSI & TU Darmstadt) 14ex  Workshop on Nuclear Astrophysics.   Ringberg, 10-15 March  2008
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Figure 2. Schematic representation of the processes that occur in a collapsing stellar iron core on the way to the
supernova explosion. The diagrams (from top left to bottom right) visualize the physical conditions at the onset of
core collapse, neutrino trapping, shock formation, propagation of the prompt shock, shock stagnation and revival
by neutrino heating, and r-process nucleosynthesis in the neutrino-driven wind of the newly formed neutron star,
respectively, as suggested by current computer simulations. In the upper parts of the figures the dynamical state
is shown, with arrows indicating the flow of the stellar fluid. The lower parts of the figures contain information
about the nuclear composition of the stellar plasma and the role of neutrinos during the different phases.
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After the onset of a supernova explosion 
the density around the proto-neutron star 
decreases. The ongoing energy 
deposition by neutrinos in this region 
leads to the formation of a supersonic 
outflow (independent of the details of 
the explosion mechanism).

In this neutrino-driven wind heavy 
elements are thought to be produced by 
rapid neutron capture several seconds 
after the explosion has set in.



NECESSARY CONDITIONS
High neutron to seed ratio is needed to populate 
the observed A~130 and A ~ 190 peaks. 

This requires:  

• High entropy per baryon.
• Short expansion time. 
• Low Ye . 

} Hydrodynamics, 
Magnetic Fields, etc 

} Neutrino Spectra

What is the physics that determines the neutrino spectra 
emerging from the proto-neutron star ? 



Ye in the Neutrino Driven Wind

only over a very small range. Perhaps that
means that only a small minority of type II su-
pernovae, confined to a narrow mass range,
produce r-process elements.

Although abundance data for specific
isotopes in halo stars are much harder to ac-
quire than the spectroscopic data that pro-
vide the elemental abundances of figure 3,
recent isotopic observations appear to be in
agreement with the elemental abundance
trends. In particular, it has been found that
the two stable isotopes of europium are
found in the same proportion in several old,
metal-poor halo stars as they occur in solar system 
r-process material.11

That is not particularly surprising, because Eu is still
synthesized overwhelmingly by the r-process. But what
about elements like Ba that, unlike Eu, are nowadays pri-
marily made by the s-process? A recent study has found
that the relative abundance of different Ba isotopes in one
very old halo star is compatible with the Ba isotope ratio
attributable to the r-process in solar system material.12

The Eu and Ba isotope results support the conclusion that
only the r-process was producing heavy elements in the
early galaxy.

Elemental abundance patterns from additional 
r-process-rich halo stars now add support to this conclu-
sion.3 All the stars in this sample have Eu/Fe abundance
ratios that typically exceed that of the Sun by at least an
order of magnitude. Much less work, however, has been
done on r-process-poor halo stars. The halo stars presum-
ably got their heavy elements from material spewed out
by supernova explosions of an even earlier generation of
massive, short-lived stars. So not all halo stars acquired
the same share of these r-process ejecta. In halo stars poor
in r-process elements, the heavy elements are much harder
to identify spectroscopically. But studies of those very stars
might provide important clues about their massive pro-
genitors—the galaxy’s first stars.

Figure 3 also shows that the abundances of the lighter
n-capture elements, from Z = 40–50, generally fall below
the r-process curve that fits the heavier elements so well.
That difference is suggestive. It might be telling us that
the r-process sites for the lighter and heavier n-capture el-
ements are somehow different.13 Possible alternative sites
for the r-process include neutron-star binaries as well as
supernovae, or perhaps just different astrophysical condi-
tions in different regions of a single core-collapse super-
nova.3 Further complicating the interpretation, strontium,
yttrium, and zirconium (Z = 38–40)  seem to have a very
complex synthesis history that raises the specter of multi-
ple r-processes.

Is it always supernovae?
The critical parameter that determines whether the 
r-process occurs is the number of neutrons per seed nu-
cleus. To synthesize nuclei with A above 200 requires about

150 neutrons per seed nucleus. Iron is generally the light-
est of the relevant seed nuclei. Modelers of r-process nu-
cleosynthesis find the entropy of the expanding matter and
the overall neutron/proton ratio to be more useful param-
eters than temperature and neutron density. In a very neu-
tron-rich environment such as a neutron star, the r-process
could occur even at low entropy.8 But even a small excess
of neutrons over protons can sustain the r-process if the
entropy is high enough.14

The question is, Where in nature does one find the ap-
propriate conditions—either very neutron-rich material at
low entropies or moderately neutron-rich material at high
entropies? But if the entropy is too high, there will be too
few seed nuclei to initiate the r-process. The extreme case
is the Big Bang, from which 4He was essentially the heav-
iest surviving nucleus. 

Determining whether r-process conditions can occur
inside type II supernovae requires an understanding of the
nature of those stellar catastrophes. The most plausible
mechanism for such an explosion of a massive star is en-
ergy deposition in the star’s outer precincts by neutrinos
streaming from the hot proto-neutron star formed by the
gravitational collapse of the central iron-core when all the
fusion fuel is exhausted (see figure 4). The dominant neu-
trino energy deposition processes are

ne + n O p + e– and ne+ + p O n + e+.

The neutrino heating efficiency depends on convective in-
stabilities and the opacity of the stellar material to the
transit of neutrinos. The actual explosion mechanism is
still uncertain.7,14,15 Self-consistent supernova calculations
with presently known neutrino physics have not yet pro-
duced successful explosions.

There is hope, however, that the neutrino-driven ex-
plosion mechanism will prove to be right when the effects
of stellar rotation and magnetic fields are included in
model calculations that are not restricted to spherical sym-
metry. There is also still much uncertainty in our knowl-
edge of how neutrinos interact with dense matter (and in-
deed of how they behave in vacuum). The lack of
understanding of the type II supernova explosion mecha-
nism also means that we do not know the exact r-process
yields for these supernovae.

50 October 2004    Physics Today http://www.physicstoday.org
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Figure 3. Elemental abundances in the halo
star CS 22892-052 are compared with solar

system abundances attributable to the r-
process. The numerical values of the halo-
star abundances follow the convention of
figure 2. The solar system r-process abun-

dances are scaled down to compensate for
the higher metallicity of the much younger

Sun. (Adapted from ref. 9.)only over a very small range. Perhaps that
means that only a small minority of type II su-
pernovae, confined to a narrow mass range,
produce r-process elements.

Although abundance data for specific
isotopes in halo stars are much harder to ac-
quire than the spectroscopic data that pro-
vide the elemental abundances of figure 3,
recent isotopic observations appear to be in
agreement with the elemental abundance
trends. In particular, it has been found that
the two stable isotopes of europium are
found in the same proportion in several old,
metal-poor halo stars as they occur in solar system 
r-process material.11

That is not particularly surprising, because Eu is still
synthesized overwhelmingly by the r-process. But what
about elements like Ba that, unlike Eu, are nowadays pri-
marily made by the s-process? A recent study has found
that the relative abundance of different Ba isotopes in one
very old halo star is compatible with the Ba isotope ratio
attributable to the r-process in solar system material.12

The Eu and Ba isotope results support the conclusion that
only the r-process was producing heavy elements in the
early galaxy.

Elemental abundance patterns from additional 
r-process-rich halo stars now add support to this conclu-
sion.3 All the stars in this sample have Eu/Fe abundance
ratios that typically exceed that of the Sun by at least an
order of magnitude. Much less work, however, has been
done on r-process-poor halo stars. The halo stars presum-
ably got their heavy elements from material spewed out
by supernova explosions of an even earlier generation of
massive, short-lived stars. So not all halo stars acquired
the same share of these r-process ejecta. In halo stars poor
in r-process elements, the heavy elements are much harder
to identify spectroscopically. But studies of those very stars
might provide important clues about their massive pro-
genitors—the galaxy’s first stars.

Figure 3 also shows that the abundances of the lighter
n-capture elements, from Z = 40–50, generally fall below
the r-process curve that fits the heavier elements so well.
That difference is suggestive. It might be telling us that
the r-process sites for the lighter and heavier n-capture el-
ements are somehow different.13 Possible alternative sites
for the r-process include neutron-star binaries as well as
supernovae, or perhaps just different astrophysical condi-
tions in different regions of a single core-collapse super-
nova.3 Further complicating the interpretation, strontium,
yttrium, and zirconium (Z = 38–40)  seem to have a very
complex synthesis history that raises the specter of multi-
ple r-processes.

Is it always supernovae?
The critical parameter that determines whether the 
r-process occurs is the number of neutrons per seed nu-
cleus. To synthesize nuclei with A above 200 requires about

150 neutrons per seed nucleus. Iron is generally the light-
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transit of neutrinos. The actual explosion mechanism is
still uncertain.7,14,15 Self-consistent supernova calculations
with presently known neutrino physics have not yet pro-
duced successful explosions.

There is hope, however, that the neutrino-driven ex-
plosion mechanism will prove to be right when the effects
of stellar rotation and magnetic fields are included in
model calculations that are not restricted to spherical sym-
metry. There is also still much uncertainty in our knowl-
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system abundances attributable to the r-
process. The numerical values of the halo-
star abundances follow the convention of
figure 2. The solar system r-process abun-

dances are scaled down to compensate for
the higher metallicity of the much younger

Sun. (Adapted from ref. 9.)

Is set by the reactions 
in two regions. {

Neutrino-sphere at high density 
and moderate entropy.  
R ~ 10-20 km

Neutrino driven wind at low-
density and high entropy. 
R ~ 103-104 km 
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Wind models and electron fraction

Arcones et al 2007

Fischer et al 2009

Neutrino energies change with more realistic neutrino physics input
More recent simulations obtain lower antineutrino energies and therefore proton-rich conditions

Lea/Len = 1
Lea/Len = 1.1

Qian & Woosley 1996

Hüdepohl et al 2009

Woosley et al 1994

Ye & Neutrino Spectra

Qian & Woosley (1996)

Larger spectral differences imply lower Ye 



Reactions in the Neutrinosphere
MU- AND TAU-NEUTRINO SPECTRA FORMATION IN SNe 891

FIG. 1.ÈSchematic picture of neutrino spectra formation in the atmo-
sphere of an SN core.

The other Ñavors interact with the medium primarily by
neutral-current collisions on nucleons lN % Nl, a reaction
that is subdominant for the electron Ñavor. The nucleon
mass m \ 938 MeV is much larger than the relevant tem-
peratures, which are around T \ 10 MeV, so that energy
exchange between neutrinos and nucleons is inefficient.
However, nucleon-nucleon bremsstrahlung NN % NNll6 ,
as well as the leptonic processes and le % el,e`e~ % ll6
allow for the exchange of energy and the creation or
destruction of neutrino pairs and thus keep neutrinos in
local thermal equilibrium up to a radius at which these
reactions freeze out, the ““ energy sphere.ÏÏ However, the neu-
trinos are still trapped by lN % Nl up to the ““ transport
sphere, ÏÏ whence they stream freely. Between the energy and
transport spheres, neutrinos propagate by di†usion. This
region plays the role of a scattering atmosphere.

In all numerical simulations of SN neutrino transport the
neutrino collisions in the scattering atmosphere were
treated as isoenergetic so that the energy of the outgoingv2neutrino in lN ] Nl was set equal to the energy of thev1initial state. The main motivation for this approximation
was its numerical simplicity and the lack of a compelling
interest in details of the emerging and spectra. It islk lqclear, however, that isoenergetic collisions are not a particu-
larly good approximation. In Figure 2 we show the dis-
tribution of Ðnal-state energies when MeV andv2 v1 \ 30
the medium temperature is 10 MeV. A typical nucleon
velocity is then about 20% of the speed of light, so that it is
not surprising that even after a single collision the neutrino
energy is considerably smeared out. Since neutrinos interact
many times in the scattering atmosphere and since the
medium temperature decreases between the energy and
transport spheres, there can be a signiÐcant downward
adjustment of the neutrino energies (Janka et al. 1996 ; Han-
nestad & Ra†elt 1998). The main purpose of the present
paper is to provide a conceptual understanding and a quan-
titative estimate of the magnitude of this e†ect.

To address this problem, we simplify the model of Figure
1. The very concept of an energy sphere suggests that one
should think of it as a source of thermal neutrinos that
subsequently di†use through the scattering atmosphere.
Taking this concept literally amounts to the simple picture

FIG. 2.ÈDistribution of Ðnal-state energies of a neutrino with initialv2energy MeV, scattering on nondegenerate nucleons in thermalv1 \ 30
equilibrium with T \ 10 MeV. Details of how to calculate this plot are
described in Appendix B1.

illustrated in Figure 3. One no longer worries about
detailed processes like NN bremsstrahlung to thermalize
the neutrinos, but instead one directly feeds a thermal Ñux
into the scattering atmosphere.

Section 2 of our paper is devoted to showing that this
simple picture actually provides a surprisingly accurate rep-
resentation of the spectra formation problem. The neutrinos
streaming o† the transport sphere then have Ñuxes and
spectra that depend only on the temperature and theTESthermally averaged transport optical depth at theq6 ESenergy sphere, which here coincides with the bottom of the
scattering atmosphere.

As a next step, in ° 3 we study a scattering atmosphere
with a blackbody boundary condition at the bottom and
with isoenergetic lN collisions as the only neutrino inter-
action channel. We derive an explicit relationship between

and the spectral Ñux temperature of the escapingTES Tfluxneutrinos as a function of Comparing with full-scaleq6 ES.numerical simulations indicates that this exceedingly simple
model accounts for the main features of the andlk lqspectra.

Then in ° 4 we include nucleon recoils in this model. We
consider di†erent types of temperature proÐles to estimate
the shift of the Ñux temperature and identify the critical
parameters that govern *Tflux.In ° 5 we summarize and discuss our Ðndings. Many
technical details, especially regarding our implementation
of neutrino-nucleon interactions with recoil energy transfer

FIG. 3.ÈSchematic picture of our simpliÐed treatment of the scattering
atmosphere. is the medium temperature at the energy sphere.TES

Raffelt (2001)
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RESPONSE OF AN IDEAL GAS
• Process involves excitation of single (uncorrelated) particles. Total 

response is the (incoherent) sum over individual species.  

• For nucleons and electrons final state blocking is important. Matter is 
partially degenerate for typical supernova conditions. 

• Nucleons are heavy and recoil energy is small. Response lies at 
small |ω| < q v. Where v ~ pF/M or √T/M.  

Transition rate (Γ=c/λ) in a Fermi Gas.  
�(E1) =

Z
d3k3
(2⇡)3
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where the vector and axial couplings V and A, in the case of
absorption, stand for CgV and CgA , respectively. For the
reactions of interest, gv and gA are listed in Table I. Simi-
larly, for the scattering reactions of interest, V and A stand
for cV/2 and cA/2, respectively, which are listed in Table II.
The particle velocities are denoted by v i⌥pi /Ei , and the
angle between the momentum vectors piW and p jW is denoted
by � i j . Further, M is the bare nucleon mass. The functions
f i(Ei) in Eq. ⌅5� denote the particle distribution functions,
which in thermal equilibrium are given by the Fermi-Dirac
functions

f i⌅Ei�⌥⇤1⇧exp⌃ Ei⌅⇧ i

T � ⇧⌅1

, ⌅8�

where Ei are the single particle energies, ⇧ i are the corre-
sponding chemical potentials, and T is the temperature.
In general, the single particle energies and chemical po-

tentials depend on the ambient matter conditions, i.e., the
density and temperature, and also on the interactions among
the various particles. The various chemical potentials are de-
termined by the conditions of charge neutrality and, in all but
the most extremely dynamical situations, chemical equilib-
rium. In some astrophysical situations, such as in the late
stages of core collapse and during the early stages of the
evolution of a protoneutron star, neutrinos are trapped on
dynamical times within the matter �41,42⇤ and chemical
equilibrium is established among the baryons and leptons. In
this case, the chemical potentials satisfy the relation

⇧B2⌅⇧B4⌥⇧e⌅⇧✏e. ⌅9�

These situations are characterized by a trapped lepton frac-
tion YL⌥Ye⇧Y ✏e, where Ye⌥(ne⌅ne⇧)/nB and Y ✏e⌥(n✏e
⌅n ✏̄e)/nB are the net electron and neutrino fractions, respec-
tively. The evolution of a protoneutron star begins from a
neutrino-trapped situation with YL�0.4 to one in which the
net neutrino fraction vanishes and chemical equilibrium
without neutrinos is established. In this case, the chemical
equilibrium is modified by setting ⇧✏e⌥0. In all cases, the
condition of charge neutrality requires that

⌃
i
⌅nBi

⌅⇧ �⇧nli
⌅⇧ ��⌥⌃

i
⌅nBi
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where the superscript’s (⇤) on the number densities n sig-
nify positive or negative charge.
Although neutrino opacities are required for a wide range

of densities, temperatures, and compositions, for the most
part we will display results for two limiting situations,
namely beta equilibrium matter with either YL⌥0.4 or Y ✏

⌥0. These are situations encountered in the evolution of a
protoneutron star �43⇤, as discussed further in Sec. VII.

III. NONRELATIVISTIC NONINTERACTING BARYONS

For baryon densities nB↵5n0, where n0⌥0.16 fm⌅3 is
the empirical nuclear equilibrium density, and in the absence
of interactions which could significantly alter their effective
masses, baryons may be considered as nonrelativistic. The
expression for Wfi in Eq. ⌅7� then simplifies considerably,
since the baryon velocities v i�1. In this case, the terms
involving the baryon velocities may be safely neglected.
However, the term involving the angle between the initial
and final leptons remains. For reactions involving nucleons,
this term gives a small contribution, since it is proportional
to V 2⌅A 2. For simplicity, and to make an apposite com-
parison with earlier results in which this term was also ne-
glected, we drop this term in this section, but will return to a
more complete analysis in the succeeding sections.
Under these conditions, the transition rate Wfi becomes a

constant,

Wfi⌥GF
2 ⌅V 2⇧3A 2�, ⌅11�

independent of the momenta of the participating particles,
and the differential cross section is given by

1
V

d3⌥
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⌥
GF
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2 ⌅V
2⇧3A 2�„1⌅ f 3⌅E3�…S⌅q0 ,q �,

⌅12�

where the three-momentum transfer qW ⌥p1W⌅p3W , so that q
⌥⌅qW ⌅, and the energy transfer q0⌥E1⌅E3. The function
S(q0 ,q), the so-called dynamic form factor or structure
function, characterizes the isospin response of the ⌅nonrela-
tivistic� system. It is simply the total phase space available to
transfer energy q0 and momentum q to the baryons. We note
that the differential cross section is needed in multi-energy
group neutrino transport codes. However, more approximate
neutrino transport algorithms often only require the total
cross section as a function of the neutrino energy. The cross
section per unit volume given in Eq. ⌅5� then simplifies to

⌥⌅E1�
V ⌥GF

2 ⌅V 2⇧3A 2�⇥ d3p3
⌅2 �3
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S⌅q0 ,q �⌥2⇥ d3p2
⌅2 �3

⇥ d3p4
⌅2 �3

⌅2 �4⌦4⌅P1⇧P2⌅P3⌅P4�

⇥ f 2⌅E2�„1⌅ f 4⌅E4�…. ⌅14�

The total cross section given by Eq. ⌅13� can be recast as a
double integral in (q0 ,q) space using d3p3
⌥2 q(E3 /E1)dq0dq . Since E3 ranges between 0 and ⇥ ,
the limits of q0 are ⌅⇥ and E1. The limits of q are obtained
by inspecting the relation q2⌥E1

2⇧E3
2⌅2E1E3 cos �13 for

cos �13⌥⇤1. Thus, ⌅q0⌅⌃q⌃2E1⌅q0. One finds
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where the vector and axial couplings V and A, in the case of
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, ⌅8�
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tivistic� system. It is simply the total phase space available to
transfer energy q0 and momentum q to the baryons. We note
that the differential cross section is needed in multi-energy
group neutrino transport codes. However, more approximate
neutrino transport algorithms often only require the total
cross section as a function of the neutrino energy. The cross
section per unit volume given in Eq. ⌅5� then simplifies to
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RANDOM PHASE APPROXIMATION (RPA)
• An approximate method to include correlations in the 

response function. Required for consistency with the mean 
field equation of state.     

G(p) =
1

p0 � µ� (p2/2M)

G(p+ q)

• Provides a fair qualitative description of response in nuclei. 
Mean field models with consistent residual p-h interactions.      

⇧RPA = ⇧0 +⇧RPA Vc ⇧0

⇧0(q0, q) = i

Z
d4p

(2⇡)2
G(p) G(p+ q)

SRPA(q0, q) =
1

1� exp (��!)
Im[⇧

RPA
]

⇧

RPA
=


⇧

0
(q0, q)

1� Vc(q) ⇧0
(q0, q)

�



THE RESIDUAL INTERACTION IN RPA

trino opacities for the supernova explosion mechanism.
The small differences seen in Fig. 35 between the neu-

trino lumonisities with and without RPA modifications for
t⌅10 s cannot be discriminated in the case of SN 1987A,
based upon the few observed events. However, the large
number of events expected in detectors such as SuperKamio-
kande, SNO, OMNIS, and LAND for a future galactic super-
nova should provide detailed information about the neutrino
emission at late times. In a future publication, we will ex-
plore whether the modifications to the neutrino opacities of
the type investigated in this work will be discernable from a
future supernova neutrino signal. The task of isolating and
identifying features of the neutrino signal that is most sensi-
tive to the properties of matter and the neutrino opacities in
the deep interior, while daunting, promises to provide useful
insights into the nature and composition of dense matter.
Recent progress made in the field of numerical modeling of
supernova combined with the improved microphysical inputs
⌃EOS and opacities� will go a long way toward achieving
this goal.
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APPENDIX A: PARTICLE-HOLE INTERACTIONS

The p-h interaction in the Skyrme and Skyrme-like sche-
matic models may be directly obtained by double functional
differentiation of the potential energy density. The potential
energy density for the densities and temperatures of interest
is mainly a function of baryon density and proton fraction.
The temperature dependence, which enters only through the
explicitly momentum-dependent interactions, is weak. In
what follows, we provide analytical expressions for the p-h
interaction at zero temperature.
The effective nucleon-nucleon interaction in the standard

Skyrme model ⇤23⇥ is given in Eq. ⌃9�. The potential energy
density in the Hartree-Fock approximation for the above in-
teraction may be computed using the standard method by
employing plane-wave states for the nucleons ⇤23⇥. In terms
of the neutron and proton Fermi momenta kF

n and kF
p , the

neutron and proton densities nn and np , and the total baryon
density n�nn⇥np , the potential energy density is given by

1
 
�V⌅�

1
2 t0⇧ 1⇥

1
2 x0⌅ n2⇥ 1

12 t3n
⌥⇥2⇧ 1⇥

1
2 x3⌅⇥

3
20 � t1⇧ 1⇥

1
2 x1⌅⇥t2⇧ 1⇥

1
2 x2⌅ ⇤n2⌃3↵2n/2�4/3⇤ 1

2 t0⇧ 12⇥x0⌅ ⌃np2⇥nn
2�

⇤
1
12 t3n

⌥⇧ 12⇥x3⌅ ⌃np2⇥nn
2�⇥

3
20 �⇤t1⇧ 12⇥x1⌅⇥t2⇧ 12⇥x2⌅ ⇤⇤np2 kF2 ⌃p �⇥nn

2 kF
2 ⌃n �⇥ . ⌃A1�

The single-particle potential energy for a given nucleon with isospin index � and with momentum k is

U�⌃k ��
��V⌅
�nkk

, ⌃A2�

where nkk is the (��)-diagonal element of the occupation number matrix

ni j⇧�⌦⇥a j
⇥ai⇥⌦⌅, ⌃A3�

each label i , j denoting momentum, spin, and isospin. For Skyrme interactions, one gets

U�⌃k ��t0⇧ 1⇥
1
2 x0⌅ n⇥

1
6 t3n

⌥⇧ 1⇥
1
2 x3⌅ n⇥

1
12⌥t3n

⌥⇤1� ⇧ 1⇥
1
2 x3⌅ n2⇤⇧ 12⇥x3⌅ ⌃nZ2⇥nN

2 �⇤⇥
1
4 � t1⇧ 1⇥

1
2 x1⌅

⇥t2⇧ 1⇥
1
2 x2⌅ ⇤n⇧ k2⇥ 3

5 kF
2 ⌅⇤t0⇧ 12⇥x0⌅ n�⇤ 1

6 t3n
⌥⇧ 12⇥x3⌅ n�⇤ 1

4 � t1⇧ 12⇥x1⌅⇤t2⇧ 12⇥x2⌅ ⇤n��k2⇥ 3
5 kF

2 ⌃��⇤ .
⌃A4�

The p-h interaction is obtained by functional differentiation of the single-particle potential energy or equivalently the double
functional differentiation of the total potential energy, namely,

�k1k3
⇤1⇥Vph⇥k4k2

⇤1⌅�
�2�V⌅

�nk3k1�nk4k2
. ⌃A5�

Hereafter, we will employ the standard notation for the participating momenta, namely k1�q⇥q1 , k2�q2 , k3�q1, and
k4�q⇥q2, which indicates that q is the transferred momentum. The p-h interaction can be expressed as
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Vp-h⌅q1 ,q2 ,q�� �
⌅��8,S �

V ⌅��8,S �⌅q1 ,q2 ,q� P ⌅S �, ⌅A6�

with the p-h spin projectors P (0)�1/2 and P (1)�↵W •↵W 8/2. The symbol (��8) indicates the four isospin combinations

⌅pp⇧1;pp⇧1� and ⌅nn⇧1;nn⇧1� with �8�� , ⌅A7�

⌅pp⇧1;nn⇧1� and ⌅nn⇧1;pp⇧1� with �8�⇧� . ⌅A8�

Two other isospin combinations, namely, (pn⇧1; pn⇧1) and (np⇧1; np⇧1), are needed to describe the p-h interaction
relevant for the charge-exchange processes. These are, however, not independent, and may be related to interactions in the
(pp⇧1; pp⇧1), (nn⇧1; nn⇧1), and (pp⇧1; nn⇧1) by isospin considerations. Denoting the p-h interaction in the spin
independent channels as f pp , f nn , and f np for the particle-hole states (pp⇧1;pp⇧1), (nn⇧1;nn⇧1), and (pp⇧1;nn⇧1),
respectively, we arrive at the relations ⇤56⇥

f nn�t0⌅1⇧x0�⇤
1
6 t3n
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4 ⇤ t1⌅1⇧x1�⇤3t2⌅1⇤x2�⇥kF⌅n �2, ⌅A9�

f np�
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1
12 t3n
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⌅A10�

The interaction between p-h proton states f pp is related to f nn evaluated at proton fraction (1⇧x) by isospin symmetry. The
spin-dependent p-h interactions characterized by gnn , gpp , and gnp are obtained by taking functional derivatives of the
energy density with arbitrary spin excess and are given by

gnn�t0⌅x0⇧1 �⇤
1
6 t3n

⌃⌅x3⇧1 �⇤
1
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As noted earlier, the quantity gpp is equal to gnn evaluated at proton fraction (1⇧x).
For the schematic models described in Ref. ⇤41⇥, where one begins with a parametric form for the energy density for spin

symmetric, but for arbitrary isospin asymmetry. The single-particle potential, obtained by functional differentiation of the
potential energy density, is given by

Ui⌅n ,x ,k;T ��
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where the upper ⌅lower� sign in ⇥ is for neutrons ⌅protons� and i j . Taking functional derivatives of the single-particle
potential energy density, we arrive at the p-h interaction parameters

f nn�
⌥Un

⌥nn
, f pp�

⌥Up

⌥np
, f np�

⌥Un

⌥np
�
⌥Up

⌥nn
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Their explicit algebraic forms are
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p-h interaction obtained from 
the equation of state. 

Or from Fermi Liquid 
parameters from microscopic 
theories.   
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The form of the energy density employed in these schematic
models does not explicitly account for the explicit spin de-
pendence of the nucleon-nucleon interaction. The potential
energy density is independent of any spin excess, indicating
that gnn and gnp are zero.
The p-h interactions parameters discussed in this appen-

dix are related to the Fermi-liquid parameters. In symmetric
nuclear matter the appropriate relations are
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where the normalization factor N0⇥2M*kF /✏2 is the den-
sity of states at the Fermi surface. For neutron matter F0
⇥N0 f nn and G0⇥gnnN0, with N0⇥M*kF /✏2.

APPENDIX B: POLARIZATION FUNCTIONS

The various polarization functions required to evaluate
the Hartree and RPA response functions are presented in this
appendix. The zero-temperature polarization functions may
be found in Ref. ⇤34⇥ and for finite temperatures in Ref. ⇤35⇥.
Here, we collect the present extensions of these results to
asymmetric matter, and, in particular, to unlike p-h excita-
tions. For space like excitations, q⌃
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In the above,
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The particle distribution functions f i(E) are given by the
Fermi-Dirac distribution functions

f i⌅Ep*⌘⇥
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where � is the effective chemical potential defined by

� i⇥⌃ i⌅Ui⇥⌃ i⌅⌅g�Bi�0⇤t3Big Bib0⌘, ⌅B9⌘

and the particle labels 2 and 4 correspond to the initial and
final baryons.
The angular integrals are performed by exploiting the

delta functions. The three-dimensional integrals can be re-
duced to the following one-dimensional integrals:
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The form of the energy density employed in these schematic
models does not explicitly account for the explicit spin de-
pendence of the nucleon-nucleon interaction. The potential
energy density is independent of any spin excess, indicating
that gnn and gnp are zero.
The p-h interactions parameters discussed in this appen-

dix are related to the Fermi-liquid parameters. In symmetric
nuclear matter the appropriate relations are
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where the normalization factor N0⇥2M*kF /✏2 is the den-
sity of states at the Fermi surface. For neutron matter F0
⇥N0 f nn and G0⇥gnnN0, with N0⇥M*kF /✏2.

APPENDIX B: POLARIZATION FUNCTIONS

The various polarization functions required to evaluate
the Hartree and RPA response functions are presented in this
appendix. The zero-temperature polarization functions may
be found in Ref. ⇤34⇥ and for finite temperatures in Ref. ⇤35⇥.
Here, we collect the present extensions of these results to
asymmetric matter, and, in particular, to unlike p-h excita-
tions. For space like excitations, q⌃
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The particle distribution functions f i(E) are given by the
Fermi-Dirac distribution functions
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where � is the effective chemical potential defined by
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and the particle labels 2 and 4 correspond to the initial and
final baryons.
The angular integrals are performed by exploiting the

delta functions. The three-dimensional integrals can be re-
duced to the following one-dimensional integrals:
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The form of the energy density employed in these schematic
models does not explicitly account for the explicit spin de-
pendence of the nucleon-nucleon interaction. The potential
energy density is independent of any spin excess, indicating
that gnn and gnp are zero.
The p-h interactions parameters discussed in this appen-

dix are related to the Fermi-liquid parameters. In symmetric
nuclear matter the appropriate relations are
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where the normalization factor N0⇥2M*kF /✏2 is the den-
sity of states at the Fermi surface. For neutron matter F0
⇥N0 f nn and G0⇥gnnN0, with N0⇥M*kF /✏2.
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The various polarization functions required to evaluate
the Hartree and RPA response functions are presented in this
appendix. The zero-temperature polarization functions may
be found in Ref. ⇤34⇥ and for finite temperatures in Ref. ⇤35⇥.
Here, we collect the present extensions of these results to
asymmetric matter, and, in particular, to unlike p-h excita-
tions. For space like excitations, q⌃

2�0, they are given by

Im⇧L⌅q0 ,qW ⌘⇥2✏⌃ d3p

⌅2✏⌘3
Ep*2⌅⇥p⇥2cos2 �

Ep*Ep⇤q*
⌦ ,

⌅B1⌘

Im⇧T⌅q0 ,qW ⌘⇥✏⌃ d3p

⌅2✏⌘3
q⌃
2 /2⌅⇥p⇥2⌅1⌅cos2 �⌘

Ep*Ep⇤q*
⌦ ,

⌅B2⌘

Im⇧A⌅q0 ,qW ⌘⇥2✏⌃ d3p

⌅2✏⌘3
M 2*

2

Ep*Ep⇤q*
⌦ , ⌅B3⌘

Im⇧VA⌅q0 ,qW ⌘⇥2✏⌃ d3p

⌅2✏⌘3
q⌃
2M 2*

⇥q2⇥Ep*Ep⇤q*
⌦ . ⌅B4⌘

In the above,

⌦⇥F⌅Ep* ,Ep⇤q* ⌘⇤⌥„q0⌅⌅Ep⇤q⌅Ep⌘…
⇤⌥„q0⌅⌅Ep⌅Ep⇤q⌘…⇥ , ⌅B5⌘

F⌅Ep* ,Ep⇤q* ⌘⇥ f 2⌅Ep*⌘⇤1⌅ f 4⌅Ep⇤q* ⌘⇥ , ⌅B6⌘

Ep*⇥A⇥p⇥2⇤M 2*2, Ep⇥Ep*⇤U . ⌅B7⌘

The particle distribution functions f i(E) are given by the
Fermi-Dirac distribution functions

f i⌅Ep*⌘⇥
1

1⇤ exp⇤⌅Ep*⌅� i⌘/kT⇥
, ⌅B8⌘

where � is the effective chemical potential defined by

� i⇥⌃ i⌅Ui⇥⌃ i⌅⌅g�Bi�0⇤t3Big Bib0⌘, ⌅B9⌘

and the particle labels 2 and 4 correspond to the initial and
final baryons.
The angular integrals are performed by exploiting the

delta functions. The three-dimensional integrals can be re-
duced to the following one-dimensional integrals:
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•The residual interaction for density and isospin density 
fluctuations obtained from the EoS is consistent. 
•Important feedback may exist in SN simulations.
•The more important spin-flip interaction strength is 
chosen from phenomenology of response in nuclei.     



MULTI-PARTICLE EXCITATIONS
• Excitation of 2 particle-2 hole states 

enables pair-processes and larger 
energy transfer during scattering. 

• In strongly coupled systems leads to 
significant smearing of the single 
particle and collective strength. 

• Especially important for the spin 
response because spin is not 
conserved in nuclear interactions. 

• Can enhance the charged current rate 
at small Ye.        

� + n+ n ! n+ n+ �

� + �̄ + n+ n ! n+ n

n+ n ! n+ n+ � + �̄Raffelt & Seckel (1995)



UNIFIED TREATMENT OF SPIN RESPONSE
• 2p-2h response is incorporated 

through a finite quasi-particle 
lifetime correction in RPA. 
Combines single-pair and multi-
pair excitations and RPA 
correlations. 

• Captures key aspects of the 
response (screening, damping 
and collectivity). 

• Quasi-particle life-times have 
been calculated using realistic 
and modern nucleon-nucleon 
interactions.     

Lykasov, Olsson, Pethick (2005)
Lykasov, Pethick, Schwenk (2006) 
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FIG. 3: (Color online) Ratio of the spin relaxation rate to the relaxation rate for an excess of quasiparticles in a single
momentum state (1/τσ)/(1/τ ) as a function of Fermi momentum kF for purely tensor scattering amplitudes (in which case
the value is 2), for the one-pion exchange interaction (which gives the value 4/3), from low-momentum interactions Vlow k, and
including second-order many-body contributions.
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FIG. 4: The imaginary part of the spin response function Imχσ/N(0) of Eq. (21) in units of the density of states versus ω/(vFq).
Results are shown for the non-interacting system, without and with mean-field effects, G0 = 0 and G0 = 0.8 respectively, and
for different values of the spin relaxation rate 1/τσ = 0, vFqτσ = 2 and vFqτσ = 5.

range physics in nuclear forces. This deficiency of the OPE model is most prominent at low densities, in comparison
to the increasing Vlow k rate. Similar to the spin response, we find a reduction of C due to second-order many-body
contributions, where the band in Fig. 2 again indicates a range for the effects due to many-body correlations. Finally,
as expected, the relaxation rate obtained from Vlow k plus second-order contributions is now dominated by the central
terms in Eq. (42).

In Fig. 3 we show the ratio (1/τσ)/(1/τ) of the spin relaxation rate to the relaxation rate for an excess of quasi-
particles in a single momentum state as a function of Fermi momentum kF. This is a very useful measure of the
strength of noncentral interactions compared to central ones. For purely tensor scattering amplitudes, the ratio of
the corresponding spin traces in Eqs. (41) and (42) gives (1/τσ)/(1/τ) = 2, while for the OPE interaction, which
has a central part in Eq. (36), this ratio is (1/τσ)/(1/τ) = 4/3, see Eq. (40). While the ratio obtained from Vlow k

6

with dimensionless Landau parameter G0 = N(0) g0, and X̃σ = Xσ/N(0), whose imaginary part is

ImX̃σ =
ω

2vFq

[
arctan

[
(ω + vFq)τσ

]
− arctan

[
(ω − vFq)τσ

]]
. (22)

The branch of the arctangent to be used is that lying between −π/2 and +π/2. For τσ → ∞, the form for Imχσ given
by Eqs. (21) and (22) reproduces the results of Ref. [4] for single particle-hole pair states, with

ImX̃σ →
πω

2vFq
Θ

(
vFq − |ω|

)
, (23)

where Θ(x) is the step function. Our results generalize earlier work by taking into account effects due to non-zero
wavelengths and recoil of the nucleons. A direct inspection shows that the resulting dynamical structure factor
satisfies the detailed balance condition S(−ω) = S(ω)e−ω/T . In contrast to Ref. [12], where calculations were made
to leading order in the scattering rate, Eq. (21) contains contributions of higher order and thereby takes into account
the Landau-Pomeranchuk-Migdal effect [28, 29].

In the long-wavelength limit, q → 0, we have

X̃σ(ω, q → 0) =
1

1 − iωτσ
and χ̃σ(ω, q → 0) =

1

1 + G0 − iωτσ
, (24)

with imaginary part

Imχ̃σ(ω, q → 0) =
ωτσ

(1 + G0)2 + (ωτσ)2
. (25)

In the absence of mean-field effects, this has the same form as the Ansatz used by Raffelt et al. to account for multiple
scattering at low ω [8, 9, 10]. Equation (25) shows that the characteristic frequency for the response is ∼ (1+G0)/τσ.
The factor 1 + G0 indicates that near the transition to a ferromagnetic state, G0 → −1, the characteristic time
becomes long, corresponding to what is referred to as critical slowing down. For neutrons, one has G0 > 0 [30] and
the spin response is pushed to higher frequencies.

V. RELAXATION TIMES

To begin, we consider the time for an excess population of quasiparticles in a particular momentum, energy and spin
state (denoted by p1, ε1 and σ1) to relax when the distribution function for all other states is that for equilibrium.
It is convenient to consider the general case when the quasiparticles of the excess population are not on the energy
shell, since this is the quantity which naturally enters calculations of the response functions at high frequency [12].
The relaxation time can be written in operator form

1

τ(ε1 + ω, σ1 · p̂1)
=

1

τ(ε1 + ω)
(1 + α σ1 · p̂1) , (26)

where α is a coefficient that characterizes the strength of noncentral contributions to the relaxation rate. Unlike in
systems with only central interactions (α = 0), the relaxation rate depends on the spin orientation of the quasiparticle,
because spin and momentum are coupled.

By generalizing the standard theory of relaxation rates [22] to the case of noncentral interactions, we have [12]

1

τ(ε1 + ω)
=

3

4
C

[
T 2 +

(ε1 + ω)2

π2

]
, (27)

where the factor 3/4 is included so that energy-averaged relaxation rates have a simple form (see Eqs. (33) and (35))
and the coefficient C is given by

C =
4π3

3N(0)2

∏

i=2,3,4

(
m∗

kF

∫
dpi

(2π)3
δ(pi−kF)

)
(2π)3δ(p1+p2−p3−p4)

1

4
Tr

[
Aσ1,σ2

(k,k′)Aσ1,σ2
(−k,k′)

] ∣∣∣∣
p1=kF

. (28)

Here we have taken p1 to lie on the Fermi surface, Aσ1,σ2
(k,k′) denotes the quasiparticle scattering amplitude in

units of the density of states, k = p1 − p3 and k′ = p1 − p4 are the momentum transfers,2 and we have neglected

2 We use k and k′ for the momentum transfers between nucleons, in order to distinguish them from the momentum transfer q in the
structure factors. This differs from the notation used in Refs. [23, 30, 31] and these should also not be confused with relative momenta.

S�(q ! 0,⇤) =
Im⇥̃�(⇤)

1� exp (��⇤)



CHARGED CURRENT OPACITY
•  Final state electron blocking is strong for electron neutrino 

absorption reaction. 

•  Asymmetry between mean field energy between neutrons 
and protons alters the kinematics. 

•Multi-particle initial and final states can also move response to 
high energy. 

�e + n ! p+ e�

�̄e + p ! n+ e+⎨

q0 ⇡ �U = Un � Up

⌫e e�

n p Reddy, Prakash & Lattimer (1998)
Roberts (2012)
Martinez-Pinedo et al. (2012)
Roberts & Reddy (2012)

Large q0  crucial to 
overcome blocking



MEAN FIELD ENERGY SHIFT & DAMPING

q0 = En(p)� Ep(p+ q) ' pq

2m⇤
n

+ (mn �mp) + (Un � Up)

En(p) ⇡ mn +
p2

2m⇤
n

+ Un + i �n

Ep(p+ q) ⇡ mp +
(p+ q)2

2m⇤
n

+ Up + i �p

Energy Transfer in the Charged Current Process:  

⇡ 0

�U = Un � Up ⇡ 40
nn � np

n0
MeV

' 1.3 MeV



MEAN FIELD SHIFT & QP LIFE TIMES
3

1

10

100

M
eV

∆U
µ

e
=µ

n
-µ

p

1/τ
σ

0.001 0.01 0.1

n
B
 (fm

-3
)

0

0.05

0.1
Y

e

FIG. 1: Top Panel: The electron chemical potential (dashed
lines) and �U = Un�Up (solid lines) are shown as a function
of density for the two equation of state models (IUFSU: red
curves and GM3: black curves) in beta-equilibrium for Y� =
0 and T = 8 MeV. The grey band shows an approximate
range of values for inverse spin relaxation time calculated in
[8] and is discussed in connection with collisional broadening.
Bottom Panel: The equilibrium electron fraction as a function
of density for the two equations of state shown in the top
panel.

where we have use the fact that µn � µp = µe in beta-
equilibrium. Since q0 ⇤ (q0 � �M) for the �̄e process,
�M will suppress this rate exponentially. In line with
the expectation that �M increases the cross-section for
�e absorption and decreases it for �̄e absorption.

In the following we show that the mean field energy
shift, driven by the nuclear symmetry energy, has a sim-
ilar but substantially larger e⇥ect in neutron-rich matter
at densities ⇥ � 1012 g/cm3.

B. Mean Field E�ects

Interactions in the medium alter the single particle en-
ergies, and nuclear mean field theories predict a nucleon
dispersion relation of the form

Ei(k) =
�

k2 +M⇤2 + Ui ⇥ K(k) + Ui , (11)

whereM⇤ is the nucleon e⇥ective mass and Ui is the mean
field energy shift. For neutron-rich conditions, the neu-
tron potential energy is larger due the iso-vector nature of
the strong interactions. The di⇥erence �U = Un �Up is
directly related to the nuclear symmetry energy, which is
the di⇥erence between the energy per nucleon in neutron
matter and symmetric nuclear matter. Ab-intio meth-
ods using Quantum Monte Carlo reported in [20] and

[21], and chiral e⇥ective theory calculations of neutron
matter by [22] suggest that the symmetry energy at sub-
nuclear density is larger than predicted by many mean
field models currently employed in supernova and neu-
tron star studies (for a review see [23]). To highlight
its importance we choose two models for the dense mat-
ter equation of state: (i) the GM3 relativistic mean field
theory parameter set without hyperons [24] where the
symmetry energy is linear at low density; and (ii) the
IU-FSU parameter set [25] where the symmetry energy
is non-linear in the density and large at sub-nuclear den-
sity.

The electron chemical potential (dashed lines) and neu-
tron proton potential energy di⇥erence (solid lines) for
these two models are shown as a function of density in
beta-equilibrium in figure 1. Here Y� = 0 as a function of
density with an assumed temperature of 8 MeV. At sub-
nuclear densities, the IU-FSU �U is always larger than
the GM3 �U value due to the larger sub-nuclear density
symmetry energy in the former. The electron chemical
potential as a function of density, as well as the equi-
librium electron fraction, is shown in figure 1 for both
models. In beta-equilibrium, models with a larger sym-
metry energy predict a larger electron fraction for a given
temperature and density and therefore a larger electron
chemical potential. Therefore, IU-FSU has a larger equi-
librium µe than GM3 and �e+n ⇤ e�+p will experience
relatively more final state blocking. However, as we show
below, the inclusion of �U in the reaction kinematics is
needed for consistency.

To elucidate the e⇥ects of �U we set M⇤ = M and
note that this assumption can easily be relaxed [1] and
it does not change the qualitative discussion below. Be-
cause in current equation of state models the potential,
Ui, is independent of the momentum, k, this form of the
dispersion relation results in a free Fermi gas distribu-
tion function with single particle energies K(k) for nucle-
ons of species i, but with an e⇥ective chemical potential
µ̃i ⇥ µi � Ui. This fact was emphasized in Burrows and
Sawyer [2], and used to show that it was unnecessary to
explicitly know the values of the nucleon potentials for a
given nuclear equation of state (which are often not easily
available from widely used nuclear equations of state in
the core-collapse supernova community) when calculat-
ing the neutral current response of the nuclear medium.
Clearly, if both µi and µ̃i are known, then Ui can be
easily obtained. This implies that for a given tempera-
ture, density and electron fraction, the neutral current
response function is unchanged in the presence of mean
field e⇥ects, as the kinematics of the reaction are unaf-
fected by a constant o⇥set in the nucleon single particle
energies. In contrast, the kinematics of the charged cur-
rent reaction are a⇥ected by the di⇥erence between the
neutron and proton potential and the charged current
response is altered in the presence of mean field e⇥ects.

Inspecting the response function in Eq. 4 and the dis-
persion relation in Eq. 11 it is easily seen that the mean

•After a few seconds, the 
density at the neutrino 
sphere is large.         
~n0/20-n0/4. 
•Nucleon propagation is 
affected by mean fields 
and collisions. 
•Sensitive to the low-
density behavior of the 
symmetry energy. 

Roberts, Reddy Shen (2012)

Bacc
a, e

t al
 (2012) 



SPECTRA AT LATE TIMES

•Decoupling occurs at 
relatively high density.

• Spectra influenced by 
nuclear correlations. 
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ABSORPTION RATES

•Mean field energy shift helps 
overcome electron final 
state blocking. 

• Enhances νe absorption

• Larger energy needed to 
produce neutrons 
suppresses anti-νe 
absorption. 
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2

sphere because, by definition, this material can efficiently lose net electron neutrino number. At these densities, effects
due to strong interactions modify the equation of state and the beta-equilibrium abundances of neutron and protons.
Simple models for the nuclear equation of state predict that the nucleon potential energy is

Un/p ≈ Vis (nn + np) ± Viv (nn − np) , (1)

where Vis and Viv are the effective iso-scalar and iso-vector potentials. Empirical properties of nuclear matter and
neutron-rich matter suggest that Vis × n0 ≈ −50 MeV and Viv × n0 ≈ 20 MeV. The potential energy associated with
n → p conversion in the medium is

∆U = Un − Up ≈ 40 ×
(nn − np)

n0
MeV, (2)

where n0 = 0.16 nucleons/fm3 is the number density at saturation. It will be shown that ∆U changes the kinematics
of charge current reactions, so that the Q-value for the reaction νe + n → e− + p is enhanced by ∆U while that for
ν̄e + p → e+ + n is reduced by the same amount. The effect is similar to the enhancement due to the neutron-proton
mass difference, but is larger when the number density n > n0/20.

In section II, charged current neutrino opacities in an interacting medium are discussed. We consider how mean
fields affect the response of the medium in detail and how this depends on the properties of the nuclear equation of
state. The affect of nuclear correlations and multi-particle hole excitations are also discussed. In section III, the effect
of variations of the charged current reaction rates on the properties of the emitted neutrinos is studied.

II. THE CHARGED CURRENT RESPONSE

The differential absorption rate for electron neutrinos by the process νe + n → e− + p is given by

dΓ

cos θdEe
=

G2
F

2π
pe Ee (1 − fe(Ee)) ×

[

(1 + cos θ)Sτ (q0, q) + g2
A(3 − cos θ)Sστ (q0, q)

]

(3)

where Sτ (q0, q) and Sστ (q0, q) are the response functions associated with the Fermi and Gamow-Teller operators,
τ+ and στ+, respectively. The energy transfer to the nuclear medium is q0 = Eν − Ee, and the magnitude of the
momentum transfer to the medium is q2 = E2

ν + E2
e − 2EνEe cos θ. In a non-interacting Fermi gas, the response

functions Sτ (q0, q) = Sστ (q0, q) = SF(q0, q) given by

SF(q0, q) =
1

2π2

∫

d3p2δ(q0 + E2 − E4)f2(1 − f4), (4)

where the particle labeled 2 is the incoming nucleon, the particle labeled 4 is the outgoing nucleon. When the
dispersion relation for nucleons is given by E(p) = M +p2/2M , and neglecting for simplicity the neutron-proton mass
difference, the integrals in Eq. 4 can be performed to obtain

SF(q0, q) =
(

1 − e−z
)

−1
Im ΠF (5)

where z = (q0 + µ2 − µ4)/T and

Im ΠF =
M2T

πq
ln

{

exp [(emin − µ2) /T ] + 1

exp [(emin − µ2) /T ] + exp [−z]

}

, (6)

is the free particle-hole polarization function. µ2 and µ4 are the chemical potentials of the incoming and outgoing
nucleons, M is the nucleon mass, and

emin =
M

2q2

(

q0 −
q2

2M

)2

. (7)

emin arises from the kinematic restrictions imposed by the energy-momentum transfer and the energy conserving delta
function. Physically, emin is the minimum energy of the nucleon in the initial state that can accept momentum q and
energy q0.
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Figure 3.5: Top panel: First energy moment of the outgoing electron neutrino and antineutrino
as a function of time in three PNS cooling simulations. The solid lines are the average energies
of the electron neutrinos and the dashed lines are for electron antineutrinos. The black lines
correspond to a model which employed the GM3 equation of state, the red lines to a model which
employed the IU-FSU equation of state, and the green lines to a model which ignored mean field
effects on the neutrino opacities (but used the GM3 equation of state). Bottom panel: Predicted
neutrino driven wind electron fraction as a function of time for the three models shown in the
top panel (solid lines), as well as two models with the bremsstrahlung rate reduced by a factor
of four (dot-dashed lines). The colors are the same as in the top panel.
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MEAN FIELD & COLLISIONAL BROADENING  

Im⇤̃(q0, q) =
1

⇥

Z
d3p

(2⇥)3
fp(�p+q)� fn(�p)

�p+q � �p + µ̂
I(�)

I(�) = �

(q0 +⇥U � (�p+q � �p))2 + �2

S�⇥�(q0, q) =
1

1� exp (��(q0 + µn � µp)
Im

"
�̃(q0, q)

1� V�⇥ �̃(q0, q)

#
Ansatz for the spin-isospin charge-exchange response function: 

Collisional broadening (finite lifetime) introduced in 
the relaxation time approximation: � = ⌧�1

�

G. Bertsch, D. Cha, and H. Toki (1984) V�⌧ ' 200� 220 MeV/fm
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TABLE I: 1/λ in m−1 for matter in beta-equilibrium at T = 8 MeV and various densities and Eνe
= Eν̄e

= 12 MeV.

Density (fm−3) 1/λ (m−1): no MF MF (Γ = 0) RPA (Γ = 0) MF (Γ > 0) RPA (Γ > 0)

n = 0.020 1/λνe
: 5.89E-4 5.22E-3 2.11E-3 7.52E-3 3.91E-3

1/λν̄e
: 3.54E-4 2.73E-5 6.46E-5 4.47E-5 6.03E-5

n = 0.006 1/λνe
: 7.73E-4 1.58E-3 1.16E-3 1.83E-3 1.34E-3

1/λν̄e
: 2.39E-4 1.43E-4 1.98E-4 1.36E-4 1.49E-4

n = 0.002 1/λνe
: 5.28E-4 6.54E-4 5.89E-4 6.79E-4 6.09E-4

1/λν̄e
: 1.52E-4 1.32E-4 1.35E-4 1.31E-4 1.32E-4

TABLE II: 1/λ in m−1 for matter in beta-equilibrium at T = 8 MeV and various densities and Eνe
= Eν̄e

= 12 MeV.

Density (fm−3) 1/λ (m−1): no MF MF (Γ = 0) RPA (Γ = 0) MF (Γ > 0) RPA (Γ > 0)

nB = 0.020 1/λνe
: 5.89 × 10−4 5.22 × 10−3 2.11 × 10−3 7.52 × 10−3 3.91 × 10−3

1/λν̄e
: 3.54 × 10−4 2.73 × 10−5 6.46 × 10−5 4.47 × 10−5 6.03 × 10−5

nB = 0.006 1/λνe
: 7.73 × 10−4 1.58 × 10−3 1.16 × 10−3 1.83 × 10−3 1.34 × 10−3

1/λν̄e
: 2.39 × 10−4 1.43 × 10−4 1.98 × 10−4 1.36 × 10−4 1.49 × 10−4

nB = 0.002 1/λνe
: 5.28 × 10−4 6.54 × 10−4 5.89 × 10−4 6.79 × 10−4 6.09 × 10−4

1/λν̄e
: 1.52 × 10−4 1.32 × 10−4 1.35 × 10−4 1.31 × 10−4 1.32 × 10−4

III. PROTO-NEUTRON STAR EVOLUTION

To illustrate the affect of the correct inclusion of mean field effects in charged current interaction rates, as well as
the importance of the nuclear symmetry energy, three PNS cooling models are described here. The models have been
evolved using the multi-group, multi-flavor, general relativistic variable Eddington factor code described in Roberts
[12] which follows the contraction and neutrino losses of a PNS over the first ∼ 45 seconds of its life. These start from
the same post core bounce model considered in Roberts [12] and follow densities down to about 109 gcm−3. Therefore,
they do not simulate the NDW itself but they do encompass the full neutrino decoupling region.

One model was run using neutrino interaction rates that ignore the presence of mean fields, but were appropriate to
the local nucleon number densities (i.e. the re-normalized chemical potentials, µ̃i, were used but we set ∆U = 0). The
equation of state used was GM3. This model was briefly presented in Roberts [12]. Another model was calculated that
incorporated mean field effects in the neutrino interaction rates and used the GM3 equation of state. Additionally, the
bremsstrahlung rates of Hannestad and Raffelt [5] were reduced by a factor of 4 as suggested by Hanhart et al. [30].
A third model was run using the IU-FSU equation of state and including mean field effects but with everything else
the same as the GM3 model. The neutrino interaction rates in all three models were calculated using the relativistic
polarization tensors given in Reddy et al. [1] with the weak magnetism corrections given in Horowitz and Pérez-Garćıa
[6].

In the top panel of figure 5, the average electron neutrino and antineutrino energies are shown as a function of time
for the three models. As was described in Roberts [12], including mean field effects in the charged current interaction
rates significantly reduces the average electron neutrino energies because the decreased mean free paths (relative to
the free gas case) cause the electron neutrinos to decouple at a larger radius in the PNS and therefore at a lower
temperature. Conversely, for the electron antineutrinos the mean free path is increased, they decouple at a smaller
radius and higher temperature, and the average energies are larger. The antineutrino energies are also slightly larger

TABLE III: 1/λ in m−1 for matter in beta-equilibrium at T = 8 MeV and various densities and Eνe
= Eν̄e

= 12 MeV.

Density (fm−3) 1/λ (m−1): no MF MF (Γ = 0) RPA (Γ = 0) MF (Γ > 0) RPA (Γ > 0)

nB = 0.020 1/λνe
: 5.89 (−4) 5.22 (−3) 2.11 (−3) 7.52 (−3) 3.91 (−3)

1/λν̄e
: 3.54 (−4) 2.73 (−5) 6.46 (−5) 4.47 (−5) 6.03 (−5)

nB = 0.006 1/λνe
: 7.73 (−4) 1.58 (−3) 1.16 (−3) 1.83 (−3) 1.34 (−3)

1/λν̄e
: 2.39 (−4) 1.43 (−4) 1.98 (−4) 1.36 (−4) 1.49 (−4)

nB = 0.002 1/λνe
: 5.28 (−4) 6.54 (−4) 5.89 (−4) 6.79 (−4) 6.09 (−4)

1/λν̄e
: 1.52 (−4) 1.32 (−4) 1.35 (−4) 1.31 (−4) 1.32 (−4)

Energy Shift is Crucial 



CONCLUSIONS
•Difference between electron and anti-electron neutrino 

spectra is larger, time dependent and depends on the density 
dependence of the symmetry energy. 

•Mean fields alter the kinematics and energy transfers 
associated with charged current reactions. Increase the 
⌫e ⌫̄ecross-section and reduce the    cross-section  

• The Ye< 0.5 in the wind for several seconds. 

•  Other nuclear effects that could play a role: bound 
states,  two-body currents, bound-free and free-bound 
transitions.  


